The zeta function of $H \times \mathbb{Z}^{3}$ counting ideals

1 Presentation

$H \times \mathbb{Z}^{3}$ has presentation

$$
\langle x, y, a, b, c, z \mid[x, y]=z\rangle .
$$

$H \times \mathbb{Z}^{3}$ has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal \& Smith. It is

$$
\zeta_{H \times \mathbb{Z}^{3}, p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(3 s-5) .
$$

$\zeta_{H \times \mathbb{Z}^{3}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{H \times \mathbb{Z}^{3}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-8 s} \zeta_{H \times \mathbb{Z}^{3}, p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{H \times \mathbb{Z}^{3}}^{\triangleleft}(s)$ is 5 , with a simple pole at $s=5$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{H \times \mathbb{Z}^{3}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

